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Miscible porous media displacements in the
quarter five-spot configuration.
Part 1. The homogeneous case
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A detailed two-part computational investigation is conducted into the dynamical
evolution of two-dimensional miscible porous media flows in the quarter five-spot
arrangement of injection and production wells. High-accuary direct numerical simu-
lations are performed that reproduce all dynamically relevant length scales in solving
the vorticity—streamfunction formulation of Darcy’s law. The accuracy of the method
is demonstrated by a comparison of simulation data with linear stability results for
radial source flow.

Within this part, Part 1 of the present investigation, a series of simulations is
discussed that demonstrate how the mobility ratio and the dimensionless flow rate de-
noted by the Péclet number Pe affect both local and integral features of homogeneous
displacement processes. Mobility ratios up to 150 and Pe-values up to 2000 are inves-
tigated. For sufficiently large Pe-values, the flow near the injection well gives rise to a
vigorous viscous fingering instability. As the unstable concentration front approaches
the central region of the domain, nonlinear interactions between the fingers similar to
those known from unidirectional flows are observed, such as merging, partial merging,
and shielding, along with secondary tip-splitting and side-branching instabilities. At
large Pe-values, several of these fingers compete for long times, before one of them
accelerates ahead of the others and leads to the breakthrough of the front.

In contrast to unidirectional flows, the quarter five-spot geometry imposes both an
external length scale and a time scale on the flow. The resulting spatial non-uniformity
of the potential base flow is observed to lead to a clear separation in space and time
of large and small scales in the flow. Small scales occur predominantly during the
early stages near the injection well, and at late times near the production well. The
central domain is dominated by larger scales.

Taken together, the results of the simulations demonstrate that both the mobility
ratio and Pe strongly affect the dynamics of the flow. While some integral measures,
such as the recovery at breakthrough, may show only a weak dependence on Pe for
large Pe-values, the local fingering dynamics continue to change with Pe.

The increased susceptibility of the flow to perturbations during the early stages
provides the motivation to formulate an optimization problem that attempts to
maximize recovery, for a constant overall process time, by employing a time-dependent
flow rate. Within the present framework, which accounts for molecular diffusion but
not for velocity-dependent dispersion, simulation results indeed indicate the potential
to increase recovery by reducing the flow rate at early times, and then increasing it
during the later stages.
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FIGURE 1. The quarter five-spot configuration of injection and production wells.

1. Introduction

Accurate predictive capabilities for displacements in porous media represent a pre-
requisite for addressing a host of problems in fields such as hydrology or enhanced
oil recovery. Traditionally, most of the analytical, experimental and numerical in-
vestigations in this area have been performed for unidirectional flows, cf. the recent
review articles by Homsy (1987) and Yortsos (1990). However, localized injection
and production wells, present in most applications, can significantly alter the overall
dynamics of the displacement processes. Due to its practical importance in enhanced
oil recovery, the quarter five-spot arrangement of injection and production wells (fig-
ure 1) has served as the paradigm configuration for exploring these effects. Spanning
four decades, investigations of quarter five-spot flows have focused both on miscible
and on immiscible displacements, in homogeneous as well as heterogeneous porous
media. The main objective lies in the exploration of the governing physical mecha-
nisms and the interactions among them, in order to gain an understanding of the
dynamics at a level that is fundamental enough to aid in the development of more
accurate models, which in turn should allow improved performance predictions of
large reservoirs. In the present investigation, we pursue this goal by means of highly
accurate direct numerical simulations, which resolve the entire spectrum of length
scales without introducing significant levels of numerical diffusion.

The early experiments by Habermann (1960) have demonstrated how, for an
unfavourable mobility ratio, the development of viscous fingers lowers the recovery
at breakthrough of quarter five-spot flows. Further early measurements for this
geometry are reported by Simmons et al. (1959), Caudle & Witte (1959), and Lacey,
Faris & Brinkman (1961). The observed unstable fingering is similar to findings
in rectilinear displacements, exemplified by the investigations of Slobod & Thomas
(1963), Perkins, Johnston & Hoffman (1965), and Wooding (1969). While it was
recognized that this behaviour is qualitatively related to the instability mechanism
described by Hill (1952), Saffman & Taylor (1958), and Chouke, van Meurs &
van der Poel (1959) for a unidirectional flow, the more complex quarter five-spot
geometry posed a harder problem for quantifying the nature of the instability. The
main reason lies in the absence of exact solutions for variable-viscosity quarter
five-spot flows, which could serve as steady or quasi-steady base states for a linear
stability analysis. In addition, there is a lack of understanding of the mechanisms
that determine the characteristic scales of the nonlinearly evolving fingers, and the
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dynamical interactions among them. The goal of the present investigation thus is to
gain insight into the unsteady development of quarter five-spot flows as a function of
the relevant governing parameters, in particular the mobility ratio, the dimensionless
flow rate, and, in Part 2 (Chen & Meiburg 1998), the correlation lengths and variance
of permeability heterogeneities.

An important step towards understanding the dynamics of homogeneous quarter
five-spot flows lies in the realization that in the neighbourhood of the injection well the
flow is nearly radially symmetric. The stability investigations by Tan & Homsy (1987)
and Yortsos (1987) for radial two-phase flows should hence aid in understanding the
nature of the fingering instability and its role during the early stages of miscible quarter
five-spot flows. Their analysis demonstrates that the instability grows algebraically in
radial source flows, as opposed to the exponential growth observed in rectilinear flows.
Growth rates, wavenumbers of maximum growth, and short-wave cutoff wavenumbers
are all determined by the mobility ratio and the dimensionless injection rate in the
form of a Péclet number.

As far as the nonlinear evolution of homogeneous quarter five-spot flows is con-
cerned, some guidance can be obtained from simulations of rectilinear flows. Efforts
in this area date back at least to the work by Peaceman & Rachford (1962), who
developed a finite difference algorithm for computing an unstable rectilinear miscible
displacement. A large amount of detailed information is provided by the more recent
high-accuracy time-dependent simulations of Tan & Homsy (1988). These authors
formulate the miscible fingering problem in terms of vorticity and streamfunction
variables, an approach that had already proved useful in earlier immiscible fingering
calculations, e.g. Tryggvason & Aref (1983) and Meiburg & Homsy (1988). Using a
Fourier spectral method, Tan & Homsy explore miscible viscous fingering dynamics as
a function of the mobility ratio and the Péclet number. During the initial development,
the authors find good agreement with the growth rates of their earlier linear stability
investigation (Tan & Homsy 1986). As their amplitudes grow, the fingers evolve and
interact through complex dynamical processes involving spreading, shielding, and
splitting. These nonlinear mechanisms, which can best be understood in terms of
the underlying vorticity dynamics, dominate the evolution of the characteristic global
scales of the flow. One such scale is the one-dimensional mixing length, which initially
grows like the square root of time, to be followed by linear growth during the later
stages; an observation that is confirmed by the investigation of Bacri et al. (1992).
The finite difference simulations of unidirectional displacements by Christie & Bond
(1987) and Christie (1989) exhibit similar fingering dynamics and yield good global
quantitative agreement with the experimental recovery data of Blackwell, Rayne &
Terry (1959). Several other computational investigators, e.g. Sherwood (1987), Fay-
ers, Blunt & Christie (1992) and Bratvedt et al. (1992), choose not to account for
molecular diffusion or dispersion, so that the computational grid has to provide the
short-wavelength cutoff via numerical diffusion. Even though this approach produces
fingering as well, it is not suitable for a detailed direct numerical investigation of
miscible displacements, as the simulation results depend on the numerical discretiza-
tion. More recently, Blunt and coworkers (Batycky, Blunt & Thiele 1996; Thiele et al.
1996) utilize mapping of numerical solutions along streamlines in order to simulate
three-dimensional miscible displacements in heterogeneous five-spot configurations.
Their simulations, which take into account gravitational forces as well, exhibit vigor-
ous viscous fingering. The method furthermore allows big improvements in efficiency,
although in the absence of physical diffusion or dispersion, numerical diffusion sets
the short-wave cutoff length scale and hence may have a substantial effect on the
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results. King & Scher (1985) as well as Araktingi & Orr (1988) employ a probabilistic
numerical scheme, based on a random walk model, in order to explore stability issues
and the transition from fingering-dominated displacements to those dominated by
heterogeneity effects in the rectilinear configuration. A more complete review of com-
putational approaches to porous media flows is provided by Meiburg & Chen (1997).

Rogerson & Meiburg (1993a) extend the original stability investigation by Tan
& Homsy (1986) for unidirectional displacements to two-dimensional base flows
involving shear across the interface. They observe a stabilization of the front by the
shear, which affects both the growth rate and the preferred wavelength of the instabiliy.
Numerical simulations by the same authors (Rogerson & Meiburg 1993b) confirm this
stabilization. They furthermore exhibit new nonlinear fingering mechanisms as well,
among them a secondary side-finger instability, which alter the global one-dimensional
measures of the displacement process.

In terms of understanding and quantifying the governing physical mechanisms and
the interactions among them, the quarter five-spot geometry poses a somewhat more
challenging problem than unidirectional flow, both physically and computationally.
The irrotational, constant mobility flow field now gives rise to a spatially varying
strain field, which will stretch and compress the concentration front, thereby affecting
the stability of the flow. Furthermore, in contrast to unidirectional flows, the quarter
five-spot flow imposes externally prescribed length and time scales on the problem.
In addition, computationally the quarter five-spot flow is harder to treat than the
rectilinear flow as well. First of all, the velocity field becomes singular near the
injection and production wells, so that the velocity magnitude can vary by several
orders of magnitude throughout the flow field. This singular behaviour adversely
affects the accuracy of the numerical differentiation, in particular near the injection
and production wells. Interestingly, this problem becomes more significant for finer
computational grids, which locate mesh points closer to the singular corners. The CFL
condition on the time step renders explicit schemes less desirable for quarter five-
spot flows. In addition, the non-periodic boundaries limit the use of highly accurate
Fourier-based spectral methods, such as the one employed by Homsy and coworkers.
Nevertheless, there have been a few numerical investigations that have shed some light
onto miscible quarter five-spot flows. Christie (1989) presents a finite-difference-based
simulation of the quarter five-spot flow in a reservoir with permeability heterogeneities.
He employs an explicit flux-corrected transport method (FCT, Christie & Bond 1985)
with first-order time accuracy on a 150 x 150 grid. While the simulation shows a
vigorous fingering instability, the author points out that the dynamics of the evolving
fingers is affected by the orientation of the computational grid. Ewing, Russel & Young
(1989) performed finite element simulations for anisotropic, heterogeneous, miscible
flows in the quarter five-spot geometry, using grids up to 100 x 100. The authors
typically observe a dominance of the viscous fingering instability over permeability
related effects. In general, the relative importance of these effects is, of course,
expected to depend on the viscosity ratio and the degree of heterogeneity of the
porous medium. The simulations allow the authors to draw a variety of conclusions
about the importance of both anisotropy and heterogeneity. At the same time, they
state a number of issues left unresolved by their work, thereby emphasizing the need
for further, higher accuracy simulations. None of the above investigations attempts
to systematically evaluate the effect of the mobility ratio and the dimensionless flow
rate on the overall dynamics of the displacement process.

A more recent investigation by Zhang, Sorbie & Tsibuklis (1997) analyses the
quarter five-spot flow both experimentally and numerically, for different values of the
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mobility ratio. The computational method is again based on finite differences, and it
has second-order accuracy in space and time. As the authors point out, in spite of a
large value of the Péclet number the simulations do not exhibit the fine-scale structure
seen in the experiments. This, along with the fact that fingering had to be triggered
by artificial permeability inhomogeneities, suggests that numerical diffusion may have
had some effect on the computational results. While the authors do not attempt to
evaluate the influence of molecular diffusion, their results regarding overall recovery
and sweep efficiency show good agreement with the experimental measurements.

The above observations indicate that lower-order methods often do not allow the
accurate and detailed representation of complex physical mechanisms, due to the
large amounts of numerical diffusion and dispersion they introduce. Nevertheless, for
some situations they achieve good agreement with certain integral quantities obtained
from experiments, such as overall recovery or sweep efficiency. While this merely
reflects the insensitivity of some global quantities to the levels of these numerical
artifacts, it should not obscure the fact that the in-depth understanding needed
for designing and evaluating improved oil recovery methods requires high accuracy
simulations. Especially for applications involving large Péclet numbers, it is imperative
that numerical diffusion and dispersion be kept to a minimum, as they alter both
the growth rate and the length scales of the fingering instability. In fact, when
the computational algorithm introduces excessive numerical diffusion, the growth of
fingers can be suppressed altogether. This represents the reason why in many earlier
investigations fingers had to be triggered explicitly by permeability heterogeneities.
Thus there is a clear need for developing efficient computational techniques that
can accurately simulate the detailed dynamics of multiphase porous media flows in
complex geometries, without giving rise to significant numerical errors. For rectilinear
flows, the Fourier-based spectral method by Tan & Homsy (1988) shows excellent
accuracy, as does the Chebyshev collocation method introduced by Hatziavramidis
(1990). Tchelepi et al. (1993) and Tchelepi & Orr (1994) minimize the amount of
numerical diffusion by employing a particle tracking technique, although the solution
of the accompanying pressure equation still results in some artificial smoothing.
Other authors, e.g. Paterson (1984) and DeGregoria (1985) employ a diffusion-limited
aggregation approach. However, the stochastic nature of this approach prevents the
accurate simulation of the small-scale dynamics.

The present investigation employs a novel and highly accurate numerical approach
recently developed by the present authors for direct numerical simulations of miscible
porous media flows (Meiburg & Chen 1997). The numerical method is designed to
handle geometries that are more demanding than the standard unidirectional case,
and it has been validated and tested for the quarter five-spot configuration. While its
formal accuracy is fourth order in space and second order in time, diffusive terms are
represented with sixth-order accuracy. It is based on compact high-order finite differ-
ences (Lele 1992) and has the flexibility to handle non-periodic, complex boundaries.

The outline of this part, Part 1 of the present investigation, is as follows. After
formulating the physical problem in §2, the computational technique will briefly be
reviewed in §3. Subsequently, computational results regarding the effects of both the
dimensionless flow rate and the mobility ratio will be presented in §4. Here, the
emphasis will be on analysing the detailed unsteady dynamics, as well as its effect on
the global measures of the displacement process. Furthermore, the question will be
addressed as to whether a time-dependent injection protocol can increase the overall
recovery. Finally, §5 will discuss and compare the current results in light of earlier
experimental and numerical findings. In Part 2 (Chen & Meiburg 1998), the effect
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of permeability variations, characterized by a given variance and correlation length,
will be analysed in detail, while Part 3 (Pankiewitz & Meiburg 1998) will address the
effects of non-monotonic viscosity profiles in miscible quarter five-spot displacements.

The current investigation, as well as most earlier ones, employ a continuum for-
mulation based on Darcy’s law. Consequently, it does not address the effects of
microscale phenomena related to such issues as pore geometry, capillarity, wetting
properties and many more. For a detailed discussion of these and other topics, as
well as macroscopic versus microscopic approaches, the reader is referred to the
comprehensive review articles by Wooding & Morel-Seytoux (1976), Saffman (1986),
Homsy (1987), Adler & Brenner (1988), and Yortsos (1990).

2. Governing equations

The quarter five-spot geometry represents a staggered configuration of production
and injection wells of particular practical importance (figure 1). By realizing that the
overall geometry is composed of many identical building blocks, and by assuming
that the flow is identical in each one of these, we can take one such building block as
our computational domain, provided that the proper symmetry boundary conditions
are specified along its borders. We are interested in solving for the unstable, time-
dependent, incompressible flow generated by a miscible displacement process under
Darcy’s law

Veu=0, 2.1)
Vp = —%u, (2.2)

0
eTi Y u-Ve =DV (2.3)

Our attention focuses on the two-dimensional flow in a horizontal plane, so that
gravity does not have an effect. The above equations express the conservation of
mass, momentum, and species, with ¢ denoting the concentration of the displacing
fluid. As a starting point in our computational investigation, we account only for
molecular diffusion, as expressed by a scalar diffusion coefficient D. At a later point, D
will be replaced by a more realistic dispersion tensor, in order to account for the effects
of flow-related dispersion (Taylor 1953). Here, the formulation of a proper dispersion
tensor will have to account for recent findings regarding flow-induced mixing at the
pore level, cf. Petitjeans & Maxworthy (1996), Chen & Meiburg (1996), Yang &
Yortsos (1997). The stability analysis performed by Yortsos & Zeybek (1988) as well
as the nonlinear simulations of Zimmerman & Homsy (1992), both for rectilinear
displacements, demonstrate the potential influence that velocity-dependent dispersion
can have on the nature of the displacement process.

The viscosity p is supposed to be a known function of the concentration, and the
permeability has a given spatial distribution

p=p(c), k=k(x,y) (2.4)

In order to render the governing equations dimensionless, we take the lateral extent L
of one unit of the flow field as the characteristic length scale. In conjunction with the
source strength per depth 2nQ we then obtain a time scale as L?/Q, and a velocity
scale in the form of Q/L. The permeability is referred to a characteristic value K. We
furthermore scale viscosity, density, and pressure with p, p;, and Qu; /K, respectively,
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where the subscript 1 indicates the displacing fluid. Along the sides of the domain we
require the obvious symmetry boundary conditions

x=01u=0 v,=0, ¢,=0, k,=0; (2.5)
y=01:u,=0, v=0, ¢,=0, k,=0. (2.6)

These boundary conditions are needed to maintain the symmetry of the flow field,
which allows us to reduce the full five-spot problem to that of a quarter five-spot. It
should be pointed out that the line connecting the source with the sink diagonally
across the quarter five-spot element represents a further line of symmetry. However,
we do not enforce this symmetry, so that the flow is free to develop asymmetries within
the quarter five-spot element. For the purpose of solving the equations numerically,
it is convenient to recast them into the well-known streamfunction—vorticity (y, ®)
formulation (Tryggvason & Aref 1983; Meiburg & Homsy 1988; Tan & Homsy
1988). By introducing the streamfunction yp and the vorticity w in the usual way,
the continuity equation is satisfied identically. The set of governing dimensionless
equations then takes the form

1
C+pyee — iy = ﬁVzc, (2.7)
1d 1
=P (Vy-Ve)— —Vip - Vk, (2.8)
udc k
Vi = —o, (2.9)
where the Péclet number
Y
Pe== 2.1
e=7 (2.10)

can be interpreted as a dimensionless flow rate. Following other researchers (e.g. Tan
& Homsy 1986; Rogerson & Meiburg 1993a,b), we define
1d
R=—-S# (2.11)
wde
and consider R to be a constant for a given combination of fluids. In this way, the
viscosity dependence on the concentration has the form

u(c) = eR1=9), (2.12)

Alternatively, other viscosity-concentration relationships, such as for example the
quarter power law, could easily be implemented as well. One computational difficulty
arises from the fact that the flow has singularities at both well locations, making
accurate computations difficult due to problems related to numerical differentiation
near these locations. Our approach to overcoming this obstacle is based on a splitting
of the solution into a potential component u,,(x) that absorbs the wells, plus a
rotational part u,,(x) which is smooth and can be obtained with high accuracy via
the above mentioned compact finite difference approach. The potential part of the flow
consists of a two-dimensional staggered array of point sources and sinks arranged
in the quarter five-spot configuration. The corresponding velocity field can either be
evaluated on the basis of the results provided by Morel-Seytoux (1965, 1966, cf. also
Muskat 1937), or approximate analytical expressions can be constructed to any desired
accuracy by superimposing the well-known results for rows of point sources and sinks,
cf. Lamb (1932), Meiburg & Chen (1997). In order to avoid numerical instabilities,
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we furthermore smooth out the point sources and sinks by distributing their strength
in a Gaussian way, typically over a radius of about 0.05. Consequently, by using these
analytically available expressions for the potential component of the streamfunction
Yo and its derivatives, inaccuracies related to the existence of the singularities can
be greatly reduced, yielding a much more accurate representation of the flow near the
injection and production wells. Furthermore, the closed-form solution of the potential
flow component will aid in eliminating grid orientation effects, cf. also the discussion
below (Christie & Bond 1987; Christie 1989; Brand, Heineman & Aziz 1991). Since
the Laplacian of the potential streamfunction component vanishes, our governing
equations and boundary conditions become

1
¢+ Pylx — PxCy = Fevzc» (213)
1
w=—R(Vy-Vc)— %le - Vk, (2.14)
Vo = —0, (2.15)
Y = Ypor + Yror, (2.16)

where 1, is the rotational component of the streamfunction. The symmetry boundary
conditions at the sides now are

x=0,1: ¢,=0, w=0, =0, k.=0, (2.17)
y=0,1:¢,=0, o=0, =0, k,=0. (2.18)
Suitable initial conditions can be specified, for example, as
P(x, 1= 1;) = Ppor(x), (2.19)
c(x,t =t;) = co(x). (2.20)

In the present simulations, we take co(x) from the one-dimensional similarity solutions
provided by Tan & Homsy (1987) as well as Yortsos (1987) for radial source flow
at time t;. The starting time ¢; of the simulation is taken to be non-zero, in order to
avoid a singular initial concentration profile. The influence of ¢; on the simulation
results will be discussed below. Since this part of the present investigation addresses
homogeneous flows only, k is unity throughout the entire domain.

3. Numerical technique

For the reasons mentioned ealier, the solution procedure for the governing equations
will be based on high-order compact finite difference approximations. In the following,
only a brief outline of the computational method will be provided. Details, as well
as a more complete review of the literature on numerical techniques in reservoir
simulation, can be found in Chen (1998) as well as Meiburg & Chen (1997). As for
the time-stepping scheme, the traditional use of explicit methods, applied for example
by Tan & Homsy (1988) for rectilinear displacements, has considerable drawbacks
for the quarter five-spot flow. The reason lies in the singularities at the well locations,
near which the fluid velocities are orders of magnitude larger than in the centre of
the domain. For example, on a 1024% grid for a two-dimensional simulation, which
represents the finest discretization employed within the present investigation, the
magnitude of the velocities will vary by O(10%) between the grid points nearest to the
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wells and those at the centre of the computational domain. For explicit schemes, these
small regions near the wells consequently determine the maximum allowable time step
as a result of stability restrictions in terms of a CFL number. For this reason, we solve
the concentration equation implicitly by means of the Alternating-Direction-Implicit
(ADI) approach (Peaceman & Rachford 1955), cf. Meiburg & Chen (1997). Our ADI
procedure, of second-order accuracy in time, advances the concentration field over a
full time step by carrying out two successive half-steps. During the first one of these,
the convection and diffusion terms in the x-direction are treated implicitly, while
those in the y-direction are dealt with explicitly. During the second half-step, the roles
are reversed, so that now the y-direction is implicit while the x-direction is explicit.
The convection terms are discretized with fourth-order accuracy when implicit, and
with sixth-order accuracy when explicit. Diffusive terms are always discretized with
sixth-order accuracy, as is the right-hand side of the vorticity equation.

The elliptic Poisson equation for the determination of the rotational component
of the streamfunction from the vorticity distribution can be solved efficiently on the
basis of fast Fourier transform methods (Gottlieb & Orszag 1977). We found that
for large values of R and Pe, a few underrelaxed iterations between the vorticity and
the streamfunction equations became necessary in order to obtain convergence. This
might possibly represent the reason for the numerical instability observed by Tan &
Homsy (1988) at large values of these parameters. After obtaining the streamfunction,
the velocity components are computed by differentiation in Fourier space.

3.1. Validation

Rigorous validation represents an important step in establishing the accuracy and
convergence properties of a novel numerical approach. As discussed in detail in
Meiburg & Chen (1997), we carried out a number of test calculations for quarter
five-spot flows that demonstrate second-order temporal accuracy, along with spatial
accuracy between fourth and sixth order, depending on the relative importance of
convective and diffusive terms. In order to validate the complex coupling between
concentration, viscosity, and velocity fields, we employ the linear stability results by
Tan & Homsy (1987) for radially symmetric miscible displacements in homogeneous
porous media. The radially symmetric flow closely approximates the neighbourhood
of the injection well in the quarter five-spot configuration, so that we expect the
linear theory to accurately predict the early phase of finger growth in the quarter
five-spot geometry. For R = 5, i.e. an unfavourable mobility ratio of 148.4, Tan &
Homsy provide both the algebraic growth rate ¢ and the wavenumber n,,,, (number
of fingers around the azimuth) of maximum growth as a function of Pe. Specifically,
when applying the linear theory for the asymptotic limit Pe — oo to Pe = 400, the
authors obtain ¢ ~ 27 and n,,, =~ 60. In comparison, our simulation of a quarter
five-spot flow for R = 5 and Pe = 400 (512 x 512 grid, At = 107°) after an initial
transient shows a distinct region of algebraic growth, as can be seen from the data
for the vorticity maximum w,,, presented in figure 2. The slope corresponding to
the growth rate predicted by linear stability theory is indicated as well, and visual
inspection shows excellent agreement. By counting the number of fingers emerging in
the quarter five-spot flow, we obtain n,,,, ~ 48-56, which again indicates very good
agreement. This test indicates that the computational method duplicates the coupling
of concentration and velocity fields with high accuracy.

A major concern in the numerical simulation of unstable porous media displace-
ments is the issue of grid orientation effects. For a careful recent analysis of this
topic and a review of the pertinent literature, see Brand et al. (1991). The authors
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FIGURE 2. Maximum vorticity value w,,, in the flow field as a function of time for R = 5 and
Pe = 400. Excellent agreement is observed between the growth rate of the simulation and the
algebraic growth rate predicted by Tan & Homsy (1987), shown as a dotted line.

identify as the underlying cause for grid orientation effects the anisotropic nature
of numerical diffusion introduced by discrete finite difference operators. As a result,
grid orientation effects are shown to persist as long as the numerical diffusion is
comparable to or larger than the physical diffusion, which is the case for most of
the reservoir simulations reported in the literature. Our above comparison with linear
stability results, on the other hand, demonstrates that, due to the high accuracy of the
numerical technique, the amount of artificial diffusion introduced by the discretization
is much smaller than the physical diffusion. If substantial numerical diffusion were
present, an effectively lower value of Pe would result, which should affect both the
algebraic growth rate and the number of emerging fingers. The excellent agreement
between simulation results and linear theory thus implies that grid orientation effects
are not a concern for the present simulations. The comparison with linear stability
theory represents a very useful tool for obtaining information about the presence of
numerical diffusion, and it should serve as a universal test case for direct numerical
simulations of miscible quarter five-spot displacements.

4. Results
4.1. Influence of Pe

For a given combination of fluids, the value of Pe is directly proportional to the
flow rate. Small flow rates provide diffusion with enough time to smear out the
concentration field, whereas for larger flow rates steeper concentration gradients can
be maintained. While the findings by Tan & Homsy (1987) as well as Yortsos (1987)
regarding algebraic growth for radial source flow are expected to be relevant to the
present investigation, the quarter five-spot flow differs from the radial source flow in
two important aspects. First of all, even near the injection well the flow geometry
is not perfectly radial, so that the axially symmetric base state investigated by Tan
& Homsy will never be fully established. As a result, strictly speaking there is no
‘base flow’” solution to the governing equations, which could be analysed for the
development of instabilities. However, since the quarter five-spot flow asymptotically
approaches a radial source flow near the injection well, we expect to observe strong
similarities to the radial source flow in this region. This is confirmed by the above
comparison with linear stability theory. Hence we will refer to the ‘base flow’ and its
‘instabilities’ even for the quarter five-spot case, while keeping the above limitations in
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mind. In addition, the flow domain is of finite extent, so that any emerging unstable
flow features only have a finite time to grow to significant amplitudes. These points
should be kept in mind for the following discussion of a series of simulations with
increasing values of Pe. Throughout all of these calculations, the mobility ratio is held
constant at R = 2.5. As initial condition for the concentration field, the self-similar
distribution of the radially symmetric flow (Tan & Homsy 1987) is specified for time
t; = 0.02. As a result, the front is initially located at a distance of 0.2 from the injection
well. The influence of the initial time ¢; on the results will be discussed in detail below.

We begin by describing the flow for Pe = 200, which was simulated using a 384 x 384
grid and a time step of 10~*. Figure 3(a) shows the concentration field for times 0.1
and 0.3072. During the early stages of the flow, we observe a nearly axisymmetric
migration of the front, which at the same time spreads diffusively. Compared to
rectilinear flow, however, the effects of diffusion are partially compensated by the
strain field, which tends to steepen the front. Around t = 0.2, the deviation of the
quarter five-spot flow from a purely radial source flow becomes clearly visible. Near
the centre of the flow field, the concentration front encounters relatively large flow
velocities in the diagonal direction, which accelerate the front towards the production
well. In contrast, the front enters regions of smaller flow velocities along the edges of
the domain, as it approaches the stagnation points located in the upper left and lower
right corners. The differences in the propagation velocities of neighbouring front
segments lead to an overall stretching of the front, which is particularly pronounced
near the main diagonal. As a result, the frontal regions located there become quite
steep as they approach the production well. Breakthrough, which we define as the
time when the ¢ = 0.1 contour reaches the production well, occurs around ¢, = 0.307.
The breakthrough recovery 7 is defined as

n=-=; (4.1)

n represents the ratio of the breakthrough time ¢, and the dimensionless time 2/n
needed by the source to produce enough fluid to fill the entire computational domain.
Phrased differently, the breakthrough recovery indicates the fraction of resident fluid
displaced from the reservoir by the time of breakthrough.

A Dbetter understanding of the underlying flow dynamics can be obtained by
analysing the vorticity and streamfunction fields. Figure 3(b) shows vorticity contours
for times 0.1 and 0.3. We observe the growth of a symmetric dipole distribution,
which takes the form of a concentrated pair of vortex sheets at later times. The
rapid strengthening of these sheets is due to the increasing misalignment between the
velocity and the concentration gradient vectors, cf. equation (2.14). The perturbation
streamfunction associated with this vorticity distribution (shown in figure 3¢ for t =
0.3) has the form of a ‘double eddy’, which augments the potential base flow along the
diagonal, while retarding the front propagation along the edges. The streamfunction
of the potential base flow is depicted in figure 3(d), while figure 3(e) shows the
superposition of base flow and perturbation. The bunching of the streamlines along
the diagonal near the production well indicates the locally large velocities, which lead
to the accelerated breakthrough compared with the potential flow. Notice that both
the vorticity distribution and the perturbation streamfunction exist solely as a result
of the viscosity contrast between the two fluids. From the investigations of Rogerson
& Meiburg (1993a,b) we can conclude that the drawn out segments of the front near
the production well are quite stable, since they are subject to small normal velocities
and strong shear.
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FIGURE 4. R = 2.5 and Pe = 400. (a) Concentration contours at times 0.2 and 0.3028. A first tip
splitting event occurs at this increased flow rate. (b) Vorticity contours at time 0.3. The tip splitting
leads to the evolution of two vortex sheet pairs. (¢) The perturbation streamfunction at t = 0.3
demonstrates how the tip splitting leads to a redirection of the flow away from the diagonal.

As Pe is increased to 400, several of the flow characteristics change qualitatively.
The calculation now employs a 512 x 512 grid, along with a time step of 5 x 107,
Figure 4(a) shows the concentration contours at times 0.2 and 0.3028. As for the
lower Pe case, the front propagates in a nearly axisymmetric fashion until it reaches
the centre of the domain. However, in the present, larger Pe flow, this time suffices
for the viscous fingering instability to grow to an amplitude that is large enough to
result in a splitting of the front near the diagonal. The symmetry of the initial condi-
tions is preserved almost perfectly, so that two equally strong fingers now propagate
towards the production well, trapping some of the resident fluid in between them.
The breakthrough time ¢, = 0.303 is nearly unchanged from the earlier case.

The vorticity, shown in figure 4(b) for t = 0.3, now shows the development of an
instability of the early dipole configuration, which leads to the formation of two vortex

FIGURE 3. R = 2.5 and Pe = 200. (a) Concentration contours at times 0.1 and 0.3072. During
the early stages, the concentration front evolves in an almost radially symmetric fashion. Later,
it becomes increasingly aligned with the flow direction. (b) Vorticity contours, scaled with the
instantaneous maxima, for times 0.1 and 0.3. The initial dipole evolves into a pair of concentrated
vorticity layers. (¢) The perturbation streamfunction at t = 0.3 takes the form of a double eddy that
enhances the potential base flow along the diagonal. (d) The streamfunction of the potential base
flow. (e) Superposition of the base flow and perturbation streamfunctions.



246 C.-Y. Chen and E. Meiburg

sheet pairs, each of which propels a finger along its centre. The redirection of the
flow away from the diagonal is furthermore reflected in the plots of the perturbation
streamfunction (figure 4c¢) as well.

For Pe = 800, the dynamical complexity of the flow increases further. The con-
centration contours at times 0.175 and 0.267 (figure 5a) demonstrate the emergence
of approximately sixteen fingers due to the viscous fingering instability of the nearly
radial source flow. These fingers evolve solely from the perturbation provided by the
small deviation of the quarter five-spot flow from the radial source flow, without any
explicit triggering. The number of fingers amplified by the flow reflects the optimally
growing wavenumber of the radial flow, thereby confirming the ability of the present
simulations to duplicate the physical wavenumber selection mechanism known from
linear stability theory. For the present large Pe, the instability grows sufficiently fast
to dominate the flow before the front reaches the centre of the domain and loses
its near axisymmetry. The many localized dipoles in the vorticity field, depicted in
figure 5(b) for the same times as the concentration field, reflect the emergence of
multiple fingers as well. As the unstable front reaches the central domain, the fingers
undergo a nonlinear selection process. Those near the diagonal continue to exhibit
vigorous growth, fuelled by the strong normal flow velocities in this region. Those
fingers closer to the edges, on the other hand, reach a maximum amplitude, upon
which they decay diffusively due to the decrease in the local normal velocity. In
addition, some of the fingers undergo a merging event, similar to those observed in
rectilinear displacements (Tan & Homsy 1988; Zimmerman & Homsy 1992; Roger-
son & Meiburg 1993b). Both the perturbation streamfunction (shown in figure 5c
for t = 0.15 and 0.267) and the overall streamfunction (depicted in figure 5d for
the identical times) demonstrate the generation of smaller scales and more complex
overall flow patterns. The breakthrough time ¢, now is approximately 0.267, which
is more than 10% lower than the values observed for lower Pe. This reflects the
strong influence of Pe on the dynamics of the flow, and on the overall recovery
rate.

For Pe = 1200, the generation of smaller scales in the flow field becomes even more
pronounced, see figure 6. The low level of diffusion allows many fingers to grow to
relatively large amplitudes, at which point some of them are affected by such nonlinear
mechanisms as tip splitting and merging. As the highly distorted concentration front
reaches the central regions of the flow, the four fingers nearest to the diagonal begin
to outgrow their neighbours and to accelerate towards breakthrough. It is interesting
to note that all four of these fingers stay in competition until very late times. In the
absence of further secondary instability events such as tip splitting or side branching,
they maintain long and slender shapes that resemble those observed in the experiments
of Zhang et al. (1997).

The largest value of Pe simulated in this investigation is 2000. Concentration
contours, computed on a 1024 x 1024 grid, are shown in figure 7(a) for R = 2.5 and
a starting time of the simulation ¢; = 0.005. In order to break the artificial symmetry
about the diagonal, slightly asymmetric initial conditions are prescribed. During the
early, nominally nearly axisymmetric stages, the unstable flow gives rise to numerous

FIGURE 5. R = 2.5 and Pe = 800. (a) Concentration contours at times 0.175 and 0.267. At this larger
Pe value, a vigorous fingering instability is observed. (b) The vorticity field at the same times as in
(a). (c¢) The perturbation streamfunction at times 0.15 and 0.267. (d) Overall streamfunction at the
same times as in (c).
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FIGURE 6. R = 2.5 and Pe = 1200. Concentration contours for times (a) 0.1, (b) 0.2, (¢) 0.25, and
(d) 0.2687. Several long, slender fingers stay in competition and dominate the flow until breakthrough
occurs.

small fingers, which soon reach amplitudes large enough for nonlinear effects to
become important. The competition between them reduces their number to O(10),
mostly due to shielding and merging events, and in spite of an occasional tip splitting.
The remaining fingers continue to interact strongly with each other, in particular
through partial merging, shielding, and splitting events. In the process, several small
islands of resident fluid are formed and left behind. In contrast to the lower Pe
simulations, the fingers near the edges of the domain keep growing until later times,
in spite of the eventual dominance by those fingers located near the diagonal.

It is of interest to note the fairly short time scale of the nonlinear selection
mechanism that decides which finger will eventually break through first. As late as
t = 0.160, there are still several fingers that appear to have a chance to win the
overall competition. However, by t = 0.200, a clearly dominant finger has emerged,
and by t = 0.240 breakthrough occurs. During the final stages, the dominant finger
accelerates considerably, which triggers several additional tip-splitting events that lead

FIGURE 7. R = 2.5 and Pe = 2000. (a) Concentration contours at times 0.05, 0.1, 0.200 and 0.240.
After the formation of many fingers during the initial stages, nonlinear interactions lead to a
reduction in their number. Shortly before breakthrough, the acceleration of the dominant finger
leads to a renewed generation of small scales. (b) The perturbation streamfunction at t = 0.240. (¢)
The overall streamfunction at t = 0.240. (d) Velocity magnitude contours at t = 0.240.
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to the generation of fairly small scales near the production well. Most of the flow
field remains frozen during the last stages and shows very little change after ¢ ~ 0.16.

The dominant scales of the flow field show an interesting dependence on space and
time. During the early phase, the linear instability of the nearly radially symmetric
flow gives rise to many fingers of very small size near the injection well. Subsequently,
merging, shielding, and diffusion, in combination with the slowdown of the front in the
central region, eliminates many of the small-scale features, so that the dominant length
scale grows dramatically. Eventually, however, as the dominant finger accelerates
towards the production well, its instability produces smaller scales in this region
again.

Figures 7(b) and 7(c) show the perturbation streamfunction and the overall stream-
function, respectively. While globally the perturbation streamfunction still has the
character of a dipole, it now exhibits many additional smaller-scale structures, which
reflect the channelling of the injected fluid through the evolving fingers. The overall
streamfunction also indicates preferred paths for the flow, as does the contour plot
for the velocity magnitude shown in figure 7(d). This graph indicates that at the
breakthrough time only a few, long and narrow regions have a sizeable fluid velocity,
whereas everywhere else the fluid is essentially at rest. It is interesting to note that
there is not a single, connected channel for the fluid, but rather a few almost discon-
nected segments. Consequently, the velocity field has to keep evolving even beyond
the breakthrough time, although this was not explored in the present investigation.

The above simulations show that for Pe-values sufficiently large to support viscous
fingering, the flow evolves through distinct stages. Early on, while the growing per-
turbations are still small, the intial concentration front spreads in a nearly radially
symmetric fashion, its thickness being determined by the competition of molecular
diffusion and strain. After a time that decreases with increasing Pe, the emergence of
many viscous fingers becomes the dominant feature. These fingers undergo algebraic
growth in quantitative agreement with the linear stability results for radial source
flow. Once the fingering instability has reached a certain amplitude, nonlinear effects
gain importance, which lead to the selection and preferential growth of one or a few
fingers near the diagonal. These fingers subsequently undergo a strong acceleration,
until they break through at the production well.

The different dynamical evolutions are reflected in the time-dependent growth of
the maximum vorticity value w,,, in the flow field, which is shown in figure 8 for
R = 2.5 and various Pe. The interaction of the radially symmetric initial condition
for the concentration field with the slightly non-radially symmetric potential velocity
field causes finite-strength vorticity to be present from the very start. During the
early stages, its maximum grows slowly as the ‘base flow” develops. For relatively
small Pe-values, the time scale associated with the growth of the instability is not
small compared to the time scale of the overall quarter five-spot flow, so that a
region of algebraic growth does not evolve. With increasing Pe, however, those
spectral components of the initial vorticity that correspond to the eigenfunctions of
the radially symmetric linear stability problem, are strongly amplified in an algebraic
fashion and soon begin to dominate the evolution. Hence, for those simulations that
develop a viscous fingering instability, the vorticity maximum undergoes a period of
algebraic growth, whose growth rates are in excellent agreement with the predictions
by Tan & Homsy’s (1987) linear stability investigation for radial source flow. With
increasing values of Pe, the amplification rates increase, and the evolution of the
flow becomes dominated by algebraic growth at earlier times. At maximum vorticity
values that increase with Pe, all calculations show some nonlinear saturation.
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FIGURE 8. R = 2.5. Maximum vorticity value ,,,, in the flow field as a function of time for various
Pe-values. From right to left, the curves are for Pe = 400, 600, 800, 1200, and 2000. All calculations
started at the identical time of 0.02, except for the case Pe = 2000, which started at t = 0.005. Small
Pe do not result in an algebraic growth regime. Larger Pe-values give rise to a fingering instability,
whose algebraic growth sets in earlier with increasing Pe.
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FIGURE 9. R = 2.5. Recovery at breakthrough in per cent, as a function of
Pe. «, t; = 0.02; o, t; = 0.005.

Figure 9 depicts the recovery at breakthrough as a function of Pe, for R = 2.5 and
t; = 0.02, where breakthrough is defined as the time at which the ¢ = 0.1 contour
reaches the production well. The qualitatively different flow regimes described above
strongly affect this efficiency. For relatively small Pe-values, the efficiency decreases
with increasing Pe, before levelling off somewhat around Pe =~ 400. As Pe increases
further, more and more vigorous fingering ensues, which leads to a renewed drop in
efficiency, followed by another levelling off above Pe =~ 800. The Pe = 2000 simulation
shows a further drop in efficiency. However, this simulation started at an earlier time,
and it employed slightly asymmetric initial conditions, so that the comparison with
the lower Pe calculations is of limited value here. Regarding the effects of simulation
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FiGURE 10. R = 2.5. The interfacial length, measured as explained in the text, as a function of time
for various Pe-values. From right to left, the curves are for Pe = 400, 600, 800, 1200, and 2000.
All calculations started at time 0.02, except Pe = 2000, which started at t; = 0.005. The more rapid
growth of the interfacial lengths observed for higher Pe-values reflects the distortion of the interface
due to viscous fingering.

starting time and asymmetry, more information will be provided below. In any case,
our data provide some support for the observation by Brock (1990) that for very
large Pe values the global flow features become increasingly independent of Pe, even
though the dynamics of the flow continues to change at the small-scale level.

An interesting quantity is the length of the interface separating the two phases.
Strictly speaking, of course, such an interface is not defined for the present case of
miscible flow. However, the quantity

L(t) = /01 /Ol(ci +¢2)dxdy (4.2)

provides a good measure of the overall length L(t) of the diffusive region between
the two fluids. Its growth is shown in figure 10 for R = 2.5 and several different
Pe-values. During the initial stages, when the interface is of nearly circular form, its
length grows according to

L(t) ~ t'/? (4.3)
in all simulations. Later, however, the asymmetry of the base flow as well as the
vorticity in the flow field lead to a distortion of this circular shape, and thereby

to a faster interfacial growth. As a general tendency, the interface becomes more
convoluted as Pe increases, which is reflected by the larger values of its length.

4.2. Influence of mobility ratio

The second dominant dimensionless parameter governing the overall evolution of
homogeneous flows is the mobility ratio R. Its influence can best be analysed by
discussing a series of simulations employing different values of R, for which Pe is
held constant.

The case R =0, Pe = 400 displayed in figure 11 shows the passive convection of
the concentration field in the potential quarter five-spot flow. Since both fluids have
identical viscosities, no vorticity is being generated (de Josselin de Jong 1960), so
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FiGure 11. Concentration field for R = 0 and Pe = 400. Shown are the contours for times
(a) t =0.3, and (b) 0.4570. In the absence of a viscosity contrast, the concentration field is passively
convected along by the irrotational velocity field.

(@)

0 02 04 06 08 10

(b)

0.2 . . . . 0 02 04 06 08 10
X

FIGURE 12. R = 1.5 and Pe = 400. (a) Concentration contours at times 0.25, and 0.3484.
(b) Vorticity field at the same times.

that the velocity field remains potential and does not change with time. Breakthrough
occurs around t, = 0.4570, in agreement with the prediction by Morel-Seytoux (1965).

Any non-vanishing value for R renders the flow field rotational, see figure 12(a),
which for R = 1.5 shows the concentration contours at times 0.25 and 0.3484, when
breakthrough occurs. The main difference compared to the R = 0 case lies in the
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FIGURE 13. R = 5 and Pe = 400. (a) Concentration contours at times t = 0.16, and 0.2145.
(b) Vorticity field at times t = 0.20 and 0.2145. At this large mobility ratio, the fingers undergo
secondary tip-splitting and side-branching instabilities.

slowdown of the concentration front near the edges of the domain, and the speedup
of the central finger towards the production well. These features, which result in an
earlier breakthrough, and thus in reduced recovery, can again be understood best
in terms of the vorticity (figure 12b) field. It indicates that the interaction of the
velocity and viscosity fields leads to the formation of an elongated vorticity dipole,
which in turn creates a ‘double eddy’ that modifies the base flow. This eddy increases
the velocity along the diagonal, while slowing down the flow near the domain edges,
thereby leading to the observed respective acceleration and deceleration of different
parts of the front. The intense stretching of the front as it approaches the production
well leads to steep concentration gradients in this region.

As R is increased further and Pe is held constant, the tendency of the flow to develop
instabilities increases, as can be seen from the simulation for R = 2.5 and Pe = 400
described in figure 4. By further raising the value of R to 5, we trigger an even more
vigorous growth of the viscous fingering instability. As the concentration contours of
figure 13(a) (t = 0.16 and 0.2145) show, a number of fingers develop initially, of which
those closest to the main diagonal reach large amplitudes. The two central fingers
subsequently undergo repeated tip splitting events, a secondary instability that has
also been observed in rectilinear flows (Tan & Homsy 1988; Zimmerman & Homsy
1992; Rogerson & Meiburg 1993b). In the process, they furthermore begin to shield
their off-diagonal neighbours, thereby preventing them from growing further, again
in close similarity to rectilinear flows (Tan & Homsy 1988).
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FIGURE 14. Recovery at breakthrough as function of the mobility ratio R, for Pe = 400 and
t; = 0.02. The recovery decreases uniformly with increasing values of R.

The tendency of fingers to undergo tip splitting events is a function of the local
velocity field near the finger tip, and thus partially of the underlying potential flow
field. When compared to the rectilinear flow investigated by Tan & Homsy (1988),
the potential flow is quite different for the quarter five-spot flow, where it varies
spatially. Specifically, near the injection well the strain field of the irrotational flow
tends to widen the finger tip, which should promote splitting. However, since for the
present simulation parameters the fingers have not grown to large enough amplitudes
yet, the simulation does not show any tip splitting near the injection well. Near
the production well the potential flow has the effect of narrowing the finger tips,
which tends to stabilize them. Due to the large velocities in this region, however, the
simulation still shows repeated splitting, even as the fingers approach the production
well. In the centre of the domain, where we observe the first tip splitting, the potential
flow resembles uniform rectilinear flow.

The tip splitting events are reflected in the vorticity contours as well, which are
shown in figure 13(b) for times 0.20 and 0.2145. These plots furthermore demonstrate
how the shielded fingers become increasingly passive. Most of the vorticity, which
can be regarded as a ‘source’ of velocity, is concentrated in the active regions near
the finger tips.

Figure 14 indicates that the recovery at breakthrough decreases significantly as a
function of the mobility ratio R for Pe = 400 and t;=0.02. However, one has to keep
in mind that the three data points correspond to very different flow regimes. For
R = 1.5, no fingering occurs, for R = 2.5 one splitting is observed, and for R = 5 the
flow evolves under a vigorous fingering instability. A comparison of the recoveries
for different R at values of Pe that result in similar flow regimes would show a much
weaker dependence of the recovery on the mobility ratio.

4.3. Influence of the initial conditions

As shown above, the overall dynamical evolution of the flow field changes dramatically
if the fingering instability grows to amplitudes that are large enough to dominate
the flow. The radially symmetric initial concentration field by itself does not contain
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FIGURE 15. R = 2.5, Pe = 800, and t; = 0.005. Concentration contours at times (a) 0.05, and
(b) 0.2599. Except for the smaller starting time of the simulation, all parameters are identical to
the calculation shown in figure 5. The earlier starting time leads to an earlier and more vigorous
development of the fingering instability.

any perturbations that could trigger this instability. However, as discussed above, the
potential velocity field near the injection well differs slightly from a purely radial
source flow. At the start of the simulation, this small difference is sufficient to trigger
the fingering instabilities by inducing a perturbation in the concentration field as well.
This concentration perturbation grows from very small initial amplitudes with an
algebraic growth rate that depends on R and Pe only. Obviously, the instability can
start its growth only from the time for which the initial conditions have been specified.
It hence seems reasonable to ask if the instability can grow to larger amplitudes in
a simulation that starts at an earlier time, since this would provide the instability
with more time to grow. This is indeed the case, as the concentration contours in
figure 15 (R = 2.5, Pe = 800, times 0.05 and 0.2599) show. Here the starting time of
the simulation is t; = 0.005, instead of ¢; = 0.02 for the simulation depicted in figure 5.
All other parameters are identical. For the earlier starting time, vigorous fingering
sets in much earlier and has reached much larger levels by ¢t = 0.1. The subsequent
phase of deceleration near the edges, as well as acceleration and breakthrough along
the diagonal, however, proceeds quite similarly for both flows, and the breakthrough
time for the simulation started earlier is only about 3% smaller. This result indicates
that for the present set of parameters the earlier starting time has only a small
effect on the overall recovery rate, in spite of triggering much more intense early
fingering.

The situation is somewhat different for R = 2.5 and Pe = 400. The concentration
contours for t; = 0.005 (shown in figure 16 for times 0.095 and 0.2717) should be
compared with those given in figure 4 for t; = 0.02. We now observe a qualitative
change as a result of the earlier starting time. While for t; = 0.02 only a single
bifurcation of the front occurs, a starting time of t; = 0.005 results in the development
of eight fingers at an early stage. Their interaction leads to a breakthrough time of
about 0.2717, which is approximately 10% less than for the later starting time. Note
in particular that the difference between the breakthrough times is several times
larger than the difference between the simulation starting times. The difference in
these simulations is due exclusively to the longer time interval available for the
perturbations to grow. For the earlier starting time, this interval is sufficiently long
for the perturbations to grow into eight large-amplitude fingers.
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FIGURE 16. R = 2.5, Pe = 400, and t; = 0.005. Concentration contours at times (a) 0.095, and
(b) 0.2717. Except for the smaller starting time of the simulation, all parameters are identical to the
calculation shown in figure 4. The earlier start leads to the growth of eight fingers (as opposed to
a single splitting for the later starting time). As a result, the time until breakthrough is reduced by
approximately 10%.

All of the above simulations except for the one at Pe = 2000 employed initial
conditions that are symmetric with respect to the main diagonal. Any non-symmetric
truncation and roundoff errors were typically not able to break this symmetry until
very late in the simulation, so that it persisted until close to breakthrough. It is of in-
terest, however, to explore whether or not non-symmetric initial conditions might lead
to a significantly different behaviour. The simulation shown in figure 17 addresses this
issue. For R = 2.5 and Pe = 400, it employs a nearly radially symmetric initial con-
centration front, whose radius varies smoothly between r; = 0.1 in the y-direction and
r; = 0.102 in the x-direction. This simulation should be compared with the one in fig-
ure 16, where r; = 0.1 everywhere. Figure 17 shows the instability to grow faster along
the x-axis than along the y-axis. Again, a competing pair of dominant fingers evolves
near the diagonal, with the one above the diagonal breaking through first. The break-
through by an above diagonal finger in spite of the stronger early instability growth
below the diagonal is a reflection of the complex nonlinear evolution of the flow. It is
interesting to note that the breakthrough time, and hence the recovery, in this partic-
ular case changes by less than 1% as a result of the asymmetry, although one has to
keep in mind that this asymmetry is fairly small here. Figure 18 summarizes the recov-
ery data as a function of R, Pe, t;, and symmetric or non-symmetric initial conditions.

4.4. Time-dependent injection rate

The above simulations show that a vigorous fingering instability develops mostly
during the early stages, when the flow is still nearly radial, and the flow velocities are
directed approximately normal to the concentration front. During the later stages the
most advanced sections of the front, with the exception of the tip itself, increasingly
align themselves with the direction of the fluid flow, thereby becoming subject to
strong shear. This in turn stabilizes the front (Rogerson & Meiburg 1993a), so that a
fingering instability is less likely to develop during the later stages of the quarter five-
spot flow. Based on this behaviour, we can design a strategy for potentially enhancing
the recovery at breakthrough. Especially the simulations shown in figures 4 and 16
suggest that the breakthrough time for a particular combination of R and Pe can
be delayed significantly if the growth of the fingering instability can be suppressed
during the early stages. This would indicate that the breakthrough recovery of a
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FIGURE 17. R = 2.5 and Pe = 400. In order to break the symmetry of the evolving flow field, the
initial radial location of the concentration front is specified such that it varies between r; = 0.1 in
the y-direction and r; = 0.102 in the x-direction. Concentration and vorticity contours are shown
for time 0.025. While the asymmetric evolution is reflected by the concentration contours at time
0.2721, its effect on the breakthrough time is less than 1%.

constant-flow-rate process could be improved by starting with a smaller flow rate and
subsequently increasing it, so that averaged over time it reaches the same level as
that of the constant-flow-rate case. Formulated differently, we ask if, for a prescribed
overall process time, the injection rate can be optimized as a function of time in order
to maximize the breakthrough recovery.

The above ideas are explored in more detail in the calculation shown in figure 19,
which shows results for a time-dependent injection rate. Since the characteristic time
scale L?/Q(t) now varies with time, it is easier to argue in terms of injected pore volume
¢, rather than dimensionless time; g represents the total amount of fluid injected as a
fraction of the total area of the domain. In order to be able to compare the present,
variable-injection-rate results with the above constant-injection-rate simulations, we
again employ r; = 0.2 and R = 2.5. Pe now varies between 400 and 800 as follows. Up
until ¢ = 0.1571, Pe is held constant at a value of 400. Subsequently, it is continuously
increased in a smooth fashion, until it reaches 800 at g = 0.2356. Figure 19 shows the
concentrations contours for ¢ = 0.334 and 0.468. The present calculation should be
compared with those for Pe = 400 and 800 shown in figures 4 and 5. Due to the lower
initial injection rate, the variable-Pe calculation does not result in the formation of
many small fingers, such as those seen in the Pe = 800 calculation. Instead, only one
splitting occurs, and breakthrough does not take place until ¢, ~ 0.468. This value for
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FIGURE 18. Summary of recovery data as a function of R, Pe, t;, and symmetric or non-symmetric
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FIGURE 19. R = 2.5 and t; = 0.02 with time-dependent injection rate. Over the course of the
simulation, the initial Pe-value of 400 is increased to 800. Shown are the concentration contours
at injected pore volumes g of (a) 0.334, and (b) 0.468. The low Pe-value during the early stages
prevents the development of a strong fingering instability. Since larger Pe-values at later times are
unable to trigger strong fingering, the breakthrough efficiency of the variable-injection-rate process
is enhanced by approximately 8% compared to a constant-injection-rate process of equal overall
duration.

qp 1s to be compared with g,(Pe = 400) =~ 0.4757, g»(Pe = 600) =~ 0.4342 (not shown),
and ¢,(Pe = 800) ~ 0.4194. Consequently, replacing the Pe = 600 process with one
of different instantaneous, but nearly identical average injection rate, leads to an
increase of the recovery at breakthrough of almost 8%. In fact, the breakthrough
recovery is only slightly smaller than for the Pe = 400 simulation, indicating that the
increase in the flow rate at later times has an almost negligible effect.
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The important conclusion to be drawn from the above simulation is that the
breakthrough recovery is much more adversely affected by large Pe-values during the
early stages of the quarter five-spot flow. Large flow rates during the later stages,
on the other hand, do not decrease the efficiency by much. It is to be kept in mind,
however, that the present investigation is based on molecular diffusion only, while
velocity-dependent dispersion effects are not accounted for. The work by Koch &
Brady (1987, 1988), on the other hand, demonstrates that in realistic porous media
the effective diffusion coefficient can become proportional to the macroscopic flow
velocity, thereby rendering the Pe value independent of the injection rate.

5. Discussion and conclusions

The high-accuracy direct numerical simulations described above provide infor-
mation on the dynamical evolution of miscible homogeneous quarter five-spot dis-
placements at a high level of detail. By resolving all length scales of the flow, they
accurately reproduce the governing physical mechanisms, as well as the interactions
among them, as a function of the mobility ratio and the dimensionless flow rate.
The present investigation explores the influence of these parameters up to values of
R = 5 and Pe = 2000. Due to the external length scale prescribed by the quarter
five-spot configuration, perturbations only have a finite time span available during
which they can evolve into large-scale fingers. As a result, for small viscosity contrasts
and moderate Pe-values, i.c. for stable flows or flows characterized by weak instability,
a visible fingering instability does not evolve, and breakthrough occurs at a relatively
late time, so that the recovery is high. As R and Pe increase, first a single splitting
evolves, to be followed by a vigorous instability involving more and more fingers at
even larger values. Strong nonlinear interactions between the fingers are observed,
such as merging, partial merging, and shielding, along with secondary tip-splitting
and side-branching instabilities. At large Pe-values, several of these fingers compete
for long times, before usually one of them accelerates ahead of the others and leads
to the breakthrough of the front.

For moderate to high values of Pe, we find that the linear growth of the viscous
fingering instability during early stages of the flow is predicted accurately by the
linear stability analyses of Tan & Homsy (1987) and Yortsos (1987), both with
regard to the algebraic growth rate, and to the preferred wavenumber. In the direct
numerical simulations, the small deviations in the vicinity of the injection well between
the quarter five-spot configuration and the radially symmetric source flow suffice to
trigger the growth of the instability. No externally prescribed perturbations, such
as the artificial permeability inhomogeneities employed in earlier investigations, are
needed.

An important distinction of the quarter five-spot flow, as compared to the radially
symmetric base flow, concerns the strong non-uniformity of the underlying potential
base flow, with nearly radially symmetric regions of large velocities near the injection
and production wells separated by the central region, in which the flow is closer to
parallel, and also relatively slow. At large Pe-values, this spatial non-uniformity leads
to the generation of very small scales near the injection well at early times. However,
these small scales are soon convected to regions of smaller velocities, where they grow
due to nonlinear mechanisms and diffusion. Only during the final stages, as the front
approaches the production well, does a renewed generation of small scales occur.

Taken together, the results of the R = const. and the Pe = const. simulations
demonstrate that both of these dimensionless quantities strongly affect the dynamics
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of the flow. While some integral measures, such as the recovery at breakthrough,
may show only a weak dependence on Pe for large Pe-values, the local fingering
dynamics continue to change with Pe. Understanding these changes represents an
important prerequisite for designing strategies to increase the overall efficiency of the
displacement process. The observation that the dynamical fingering behaviour cannot
be predicted on the basis of R alone, as has often been attempted in the past, is
in complete agreement with earlier linear stability analyses for different base flows,
which demonstrate the importance of the dimensionless flow rate Pe (Tan & Homsy
1986, 1987; Rogerson & Meiburg 1993a). It suggests that any predictive reservoir
models will have to properly account for its influence.

The distinct flow regimes observed for different values of the governing parameters
have a strong effect on such integral quantities as breakthrough time and recovery.
In general, larger Pe-values and mobility ratios lower the overall recovery. However,
several plateau-like regimes can appear in this functional relationship, separated by
transitional regions that are characterized by changes in the overall flow dynamics,
such as the onset of fingering, the evolution of secondary instabilities, etc.

The early experiments by Habermann (1960) explore the recovery at breakthrough
as a function of the mobility ratio. The author reports no significant effect of the flow
rate on the sweep efficiency at breakthrough; however, he does not mention the range
over which he varied the flow rate. Figure 20 shows Habermann’s results regarding the
recovery at breakthrough (one set of data is based on the volume of injected fluid, the
other on the area contacted), along with our computational results for different values
of Pe and R. Overall, the agreement improves for those simulations with higher Pe-
values. Again, it needs to be kept in mind that the present investigation accounts for
molecular diffusion only, while neglecting the effects of velocity-dependent dispersion.
In the experiments, the Pe-value might vary only weakly with the flow rate. Also
plotted are the recent measurements by Zhang et al. (1997), which agree well with
Habermann’s volume-based data. Lacey et al. (1961) present experimental data for
the mobility ratios of 1, 10, and 41, and for a large range of flow rates. Unfortunately,
the authors do not provide enough information for us to calculate a Péclet number.
Nevertheless, their experiments display a weak, but noticeable tendency towards lower
recovery for higher flow rates, in agreement with our computational results. The data
are reproduced in figure 20 as well.

An interesting observation that deserves to be explored in more detail concerns the
possibility of optimizing the breakthrough recovery by employing a time-dependent
flow rate. The present simulations show that initially low flow rates can partially
stabilize the flow, thereby preventing the excessive early generation of small scales.
During the later flow stages, when the increasing alignment of the front with the
flow results in its shear stabilization, larger flow rates can be employed at a lower
penalty in terms of reduced efficiency. Consequently, within the present framework
which accounted for molecular diffusion only, for a constant overall process time,
a time-dependent injection rate has the potential of enhancing the breakthrough
recovery.

It is now of interest to employ the detailed information provided by the above
simulations in order to characterize the global features of the displacement process.
For unstable rectilinear displacements, this is typically done by analysing the temporal
evolution of the mixing length [,;., which tracks the distance between the 0.1 and 0.9
contours of the spanwise-averaged concentration profile. It is well established that, for
small initial perturbations, the early stages are dominated by diffusion or dispersion,
respectively, so that [, grows proportionally to t'/2. Once finite-amplitude fingers
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FIGUrRe 20. Recovery at breakthrough as function of the mobility ratio R, and for different
dimensionless flow rates Pe. Solid line: volume-based data by Habermann (1960); dashed line:
area-based data by Habermann (1960); ®, Lacey et al. (1961); o, experiments by Zhang et al.
(1997); +, present calculations, Pe = 200; » present calculations, Pe = 400; X present calculations,
Pe = 2000.

appear, the evolution of [, becomes increasingly dominated by convective effects,
and its average growth is approximately proportional to ¢t (Koval 1963; Perkins et al.
1965; Todd & Longstaff 1972; Tan & Homsy 1988; Araktingi & Orr 1988; Sorbie
et al. 1992; Waggoner, Castillo & Lake 1992; Lenormand 1995). It is not obvious
how an equivalent mixing length can be defined for quarter five-spot flows. Averaging
over the azimuthal direction would be appropriate for radially symmetric source
flows, but not for the present spatially varying base flow. Even taking the average
along equipotential lines of the constant mobility irrotational flow does not give a
meaningful quantity, due to the mobility-ratio dependence of the base flow. In the
following, we will attempt to provide a global characterization of quarter five-spot
flows in terms of the mixing area, defined as the area between the 0.1 and 0.9 contours.
By dividing this mixing area by the instantaneous perimeter of an equivalent circular
area of injected fluid, we then obtain a mixing length whose temporal evolution can
be tracked. However, it needs to be kept in mind that this mixing length is still not
strictly comparable to the one commonly employed in rectilinear displacements. For
example, in the limit of vanishing diffusion, the front thickness will tend to zero,
and according to our definition, the mixing length will vanish as well, in spite of the
presence of vigorous fingering. The rectilinear mixing length definition, on the other
hand, will result in a finite value, due to the averaging process it is based on.

Figure 21 depicts the development of [,;, with time for R = 2.5, with Pe as a
parameter. During the initial stages and for lower Pe-values, when the nearly radially
symmetric displacement is dominated by diffusion, the self-similar solution of the
base flow concentration profile indicates that the front thickness grows proportionally
to t'/2. Since the perimeter of the injected area grows approximately like t'/? as well
(cf. figure 10), the overall mixing area exhibits growth proportional to t. The mixing
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FiGURE 21. The temporal evolution of the mixing length. (a) As a function of Pe, for R = 2.5: -x-,
Pe =200; -x-, Pe = 400; -o-, Pe = 800; -+-, Pe = 1200; ----- , Pe = 2000. The two solid lines have
slopes of 0.5 and 1. (b) As a function of R, for Pe =400: o, R=1.5; X, R=25; 4, R=5.

length, calculated along the lines described above, then is characterized by growth
proportional to t'/2. The smaller I, values observed for larger Pe-values and constant
t; reflect the diminished importance of diffusion.

As the initially small perturbations grow to finite amplitudes, the diffusion-
dominated early stage gives way to a second phase characterized by significantly
faster growth of [,;.. Due to the larger instability growth rates, this transition occurs
at earlier times for higher Pe-values. Figure 21(a) shows that during this second stage,
the mixing length grows at rates up to t>. For the Pe-values of 800 and 1200, eventu-
ally a third phase is observed, during which the mixing length grows approximately
linearly with time. Surprisingly, the Pe = 2000 simulation shows a different behaviour
again, with growth proportional to t'/> during most of the displacement.

In order to obtain a physical interpretation of the observed growth characteris-
tics, figure 22 compares the evolution of the mixed area over short time intervals
for Pe = 1200 and the three distinct stages identified above. Figure 22(a) com-
pares the mixing areas at times 0.0375 and 0.05. Depicted in white are additions
to the mixing area during this time interval, while black indicates areas that were
mixed at the earlier time but not at the later one. The figure confirms the nearly
radially symmetric evolution of the mixing area, which during this early phase is
dominated by diffusion. Figure 22(b) compares times 0.1 and 0.1125. This second
phase is characterized by the active and nonlinear evolution of fingers along nearly
the entire circumference, resulting in vigorous growth of the mixing area. Finally,
figure 22(c) compares times 0.25 and 0.2634. During this late stage, large sections
of the front have become more or less passive. They show almost no advance at
all any more, and the mixing area in these sections grows very slowly and entirely
due to diffusion. The central region, on the other hand, is characterized by very
active fingers, whose length grows rapidly due to convective effects. The fingering
dynamics in this central front section resembles that observed in rectilinear displace-
ments, with several fingers of comparable length competing. In this light, the finding
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FIGURE 22. R = 2.5, Pe = 1200. Changes in the mixing area over small time intervals. Light regions
indicate additions to the mixing area, while dark regions mark mixing area losses.

of a mixing length growth rate similar to that observed in rectilinear flows is not
surprising.

The t'/? growth exhibited by the Pe = 2000 simulation indicates a nearly self-
similar convective growth, as opposed to the early self-similar diffusive growth. This
trend toward self-similar growth is supported by figure 23, which shows the ¢ = 0.5
concentration contour at different times, with the coordinate axes rescaled by t'/2.
The figure indicates the tendency of large sections of the front to remain centred
around constant rescaled spatial coordinates.

Figure 21(b) shows the evolution of the I, for Pe = 400, with R serving as
parameter. While the displacements for R = 1.5 and 2.5 never fully reach the state
where [, grows proportionally to time, the R = 5 case shows a very long and
pronounced region of faster than linear growth, similar to the intermediate phases
described for figure 21(a).

The above analysis shows that, in many ways, the governing mechanisms can be
analysed more easily in terms of the dynamical evolution of the underlying vorticity
field, an observation that goes back to de Josselin de Jong (1960). By interpreting
vorticity as a ‘source’ of the perturbation velocity field, the acceleration of the front
towards the production well as a result of an unfavourable mobility contrast becomes
obvious. The vorticity generated as a result of the mobility variations leads to a
dipole-like global perturbation velocity field, which augments the base flow along the
diagonal, while retarding it near the edges of the domain. For large Pe-values, smaller
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FIGURE 23. R = 2.5, Pe = 1200. The ¢ = 0.5 concentration contour at different times, with all lengths
rescaled by t'/2. Large sections of the front show a tendency toward a self-similar evolution. —,
t=0.10; - - -, t = 0.15; ----- ,t=0.20;----,t=0.22.

scales are superimposed on this global dipole structure, which favour the growth of
individual fingers, even along the boundaries.

The analysis of the displacement process in terms of the underlying vorticity
field also offers advantages when it comes to extending the above simulations to
heterogeneous porous media. As can be seen from the vorticity equation, permeability
heterogeneities lead to the existence of additional vorticity in the flow field, so that
one can interprete the dynamical evolution as a being caused by a ‘viscosity vorticity
mode’ and a ‘permeability vorticity mode,” as well as the interaction between the
two. The preliminary numerical investigation by Tan & Homsy (1992), as well as the
work by De Wit & Homsy (1997a,b), indicate the possibility for a strong coupling
between the two modes which can even display resonance-like phenomena. These
issues will be addressed in more detail in Part 2 of the present investigation (Chen
& Meiburg 1998). It should be mentioned that the presence of gravity in a fully
three-dimensional displacement with density differences provides a third source of
vorticity, with possibilities for even more complex interactions.
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